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A method for a recursive definition of global cellular-automata mappings is presented. The method is
based on a graphical representation of global cellular-automata mappings. For a given cellular-
automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as
the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata
mappings is derived from an approximation to the exact recursive definition. The recursive definitions
are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points

of cellular automata on an infinite lattice.

PACS number(s): 05.45.+b

I. INTRODUCTION

The use of cellular automata to simulate the dynamics
of physical systems has increased tremendously over the
past few years. Although the idea of using discrete
methods for modeling partial differential equations is old,
the actual proof that cellular-automata techniques can
approximate the solutions of hydrodynamic partial
differential equations was first given in 1986 [1]. This was
shown assuming microscopic conservation laws for ener-
gy and momentum of the interaction of virtual particles
on cellular-automata lattices. Since then the activity in
this particular area of cellular-automata research, which
is usually referred to as lattice gases, has been rapidly ex-
panding [2-6].

Cellular automata and related formalisms are also be-
ing extensively exploited in another new area of nonlinear
science, artificial life [7,8], in an attempt to formulate
simple algorithms capable of exhibiting the complex dy-
namics found in natural systems. This is being done
much in the spirit of von Neumann and Ulam’s original
idea behind the creation of the cellular-automata formal-
ism [9].

Despite the increasing use of cellular-automata simula-
tion techniques and their growing potential for applica-
tions, a parallel development of analytical tools has not
followed. Only few mathematical results exist in this
area; see, for instance, [10—-16].

The mathematical results to be presented in this paper
are based on a technique derived from lattice size invari-
ance of a particular definition of global cellular-automata
mappings. The global mapping is the function relating
any state of a cellular automaton to its state at the subse-
quent time step. Using a recursive technique based on
these mappings some results relating the cellular-
automata rules to the state space structure are derived.
We consider only one-dimensional cellular automata with
two possible states of each lattice site and periodic
boundary conditions. Each site evolves deterministically
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according to rules involving the values of the nearest
neighbors and the site itself. This class of cellular auto-
mata is normally referred to as elementary cellular auto-
mata [17]. It should be noted, however, that the methods
to be presented are applicable to more complicated cellu-
lar automata as well.

The evolution rule of an elementary cellular automaton
is normally expressed through a function mapping any
possible neighborhood into a corresponding site state:

af i =d¢(a/_jaja/y) , (1)

where a/ is the state (i.e., 0 or 1) of the ith site at time ¢.
¢ is referred to as the cellular-automaton rule table.
There are 256 different elementary cellular automaton
rule tables which are referred to by the rule numbers O to
255 as in [17]. Some rules are equivalent, either by
reflection or by inversion or by a combination of both
[18]. Therefore the complete set of rules can be divided
into 88 subsets of equivalent rules. Any 88 rules
representing all of these subsets will be referred to as a
basic set of cellular automaton rules. We will use the
basic subset suggested by Li and Packard [18] to
represent all elementary cellular automata.

To represent global mappings of cellular automata
graphically, an ordering of the set of all possible states
needs to be introduced. The state of a cellular automaton
with n lattice sites can be represented by the sequence
a=a,,...,a,, where a;, i€{1,2,...,n}, is either O or
1. The ordering of the states is the readily given by read-
ing the corresponding sequences as binary numbers.

Let ®, denote the global mapping of a cellular au-
tomaton with » lattice sites. ®, maps a state of a cellular
automaton at time ¢ to the state at time ¢ + 1, according
to the rule table ¢. In Fig. 1 three different ®,, mappings
for elementary cellular automata with the rules 12, 129,
and 137 are shown. Note that all of the shown mappings
apparently have a self-similar structure. Figure 2 shows
the global mappings ®,y, ®,;, and ®,, for the rule-137
cellular automaton. Note that the structure of the global
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FIG. 1. Global mappings of the 4096 possible states of a lat-
tice of size 12 for cellular-automaton rules 12, 129, and 137 (left
to right). The states are mapped onto the unit interval by divid-
ing the corresponding binary numbers by 2", where n is the lat-
tice size. Note the apparent self-similar structure of the three
mappings.

mapping seems to be independent of the number of sites.
Global mapping of cellular automata with different num-
bers of lattice sites cannot, of course, be identical, since
they contain different numbers of points. However, when
the number of lattice sites is sufficiently large, the graphi-
cal representations of global mappings with varying lat-
tice size all look alike. These properties—the self-similar
structure and the lattice size invariance—extend to all
elementary cellular automata.

II. RECURSIVE DEFINITION OF GLOBAL MAPPINGS

A. Derivation of recursive box definitions

In the following we investigate the transition from the
global mapping of a cellular automaton with n lattice
sites to the mapping of one with n +1 sites, i.e., we are
interested in the mapping F: ®,—®, .

Consider a cellular automaton with n sites, where
n=>2. In a graphical representation of the mapping the
axes, given the length 1, can be divided into 2" intervals,
each representing a state of the cellular automaton. In

this way the transition from one state a =a,. . . a, of the
cellular automaton to another ®,(a)=b=b,...b,, is
represented by a square with side length 27", as illustrat-
ed in Fig. 3.

As a new site is added to the cellular automaton, the
number of possible states is doubled and the side lengths
of the squares representing state transitions are halved.
In the following the squares with side length 27" are re-
ferred to as boxes and the squares with side length
27"+ D are referred to as sub-boxes. Due to the chosen
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FIG. 2. Global mappings of the cellular automata with rule
137, for lattice sizes 10, 11, and 12 (left to right). The states are
mapped onto the unit interval by dividing the corresponding
binary numbers by 2", where n is the lattice size. Note the ap-
parent size invariance of the structure of the mappings.
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FIG. 3. Transition from one state a =a, . .. a, of a cellular
automaton to another ®,(a)=b=b,...b,. The cellular au-
tomaton has n lattice sites, hence the side length of the square
representing the transition is 27 ".

ordering of the states, the interval on the abscissa
axis that contained a before the addition of the new

site now contains two sequences a’=a,...a,0 and

a'=a,...a,l. The question is how the addition of the
new site affects the vertical position of the two sub-boxes,
which appear instead of the original box. Denote the se-
quences, representing the states that a® and a ' maps into,
by @, ,(a%=b6=b%...0%°%,, and @, ,(a')=b'
=b}...blb!,,, respectively. Figure 4 illustrates the
transitions from a° to ° and from a ! to b! after the addi-
tion of the new lattice site.

The neighborhoods in @ and a ' leading to b9 ... b0 _,
and b)...b, | are left unchanged by the new lattice
site, implying that these subsequences are identical to
b,...b,_;. Only b,,b,, and b, ., are affected by the
new lattice site. The values of b,,b,, and b, , ; depend on
a,,a,,a, ,,a,, and on the value of the new lattice site
a, .. Given the values of a|,a,,a, _, and a, for a given
box, one can therefore calculate the positions of the two
sub-boxes that are created from the original box as the
extra lattice site is added to the cellular automaton.
Since there are only 16 possible combinations of
a,,a,,a, _, and a,, there are at most 16 different types
of behavior of the boxes in an elementary cellular au-
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FIG. 4. The transition shown in Fig. 3 after the addition of a
new lattice site to the automaton. The abscissa axis interval
containing a in Fig. 3 contains the sequences a°=a;, . . . a,0 and
a'=a,...a,l after the addition of the new site. The question
is how the new site affects the vertical position of the two new
sub-boxes with side length 27" *! as compared to the position

of the original box with side length 27",
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tomaton of any lattice size. We name these different
boxes A through P, so that 4 corresponds to boxes with
a,a,a,_,a,=0000, B corresponds to boxes with
aaya, _=0001, C corresponds to boxes with
a,a,a, _a,=0010, and so on.

The limited difference between b, b°, and b' implies
that the possible vertical positions of sub-boxes, as com-
pared to the original box, can be summarized in the fol-
lowing way.

(i) Changes of b, lead to a vertical shift of the length
1, corresponding to 2" ~! boxes since b, is the most
significant bit of b. These shifts will be referred to as long
shifts. The direction of the shift depends on the change of
b,. If b, changes from O to 1, the shift is upwards; if it
changes from 1 to O, it is downwards. If b; does not
change, no long shift takes place.

(ii) Changes of b, lead to a vertical shift of the length
27", corresponding to one box since b, is the least
significant bit of b, before the addition of the new site.
These shifts will be referred to as short shifts. The direc-
tion of the shift depends on the change of b, in the same
way as the shifts resulting from changes of b,.

(iii) The values of b°,, and b!,, determine the verti-
cal position of the corresponding sub-box within the box
reached after any shifts caused by changes of b, or b,.
Since the side length of a sub-box is half the side length of
an original box, a sub-box can be positioned either in the
upper or in the lower half of a box, depending on b2, , or
by 1.

To illustrate the above algorithm we compute the posi-
tions and the types of sub-boxes appearing from a type D
box in a cellular automaton under the action of rule 137.
The rule table ¢ corresponding to this rule is shown in
Table I.

A type D box has a,a,a, _;a,=0011. Before the addi-
tion of a new lattice site to the cellular automaton
b,=¢la,a,a,)=0 and b,=d¢(a,_,a,a,)=0. After the
addition of the new site b9=¢(0a,a,)=1,
b?=¢(a,_,a,0)=0, bY,,=¢(a,0a,)=0, b3=¢(1a,a,)
=0, b)=¢(a,_,a,1)=1,and b}, , =¢(a,1a,)=0.

Considering the left sub-box corresponding to
b%=d, . ,(a®) first, it is seen that this sub-box is shifted
2"~ 1 boxes upwards in a long shift, because b, changes
from O to 1 and b, is unchanged. Since b2, =0, the
sub-box is placed in the bottom of the box reached after
the vertical shift. The two last bits in the sequence ap-
pearing when a O is added after a, are 10. The first two

TABLE 1. The rule table ¢ of rule 137.

a;—14;4; 4+ #a;_1a;a; )

000
001
010
011
100
101
110
111

QOO0 =00 =

bits in the sequence are unchanged as the new site is add-
ed, since it is assumed that n =2. Thus the left sub-box
becomes a,a,a,a, ;=0010, corresponding to a sub-box
of type C.

The right sub-box is shifted one box upwards in a short
shift, since b, is unchanged and b, changes from 0 to
b)=1. The new site b!, ; has the value 0, so the sub-box
is placed in the bottom of the box reached after the verti-
cal shift. It is easily seen that the right sub-box becomes
a box of type D.

In order to describe the behavior of a particular type of
box in a simple and clear manner, we introduce the box
definition shown in Fig. 5. This definition consists of a
square divided into four subsquares. Two of the
subsquares contain information about a sub-box, one in
the left-hand side of the square and one in the right-hand
side. The vertical position of a nonempty subsquare indi-
cates the final position of the sub-box inside the box
reached after the vertical shifts. The information inside
the two nonempty subsquares consists of up to three sym-
bols. The symbol in the middle indicates the type of the
corresponding sub-box and is one of the letters A4
through P. The symbol, if any, to the left of the type in-
dicator indicates long shifts of the corresponding sub-
box. | indicates long shifts upwards and | indicates long
shifts downwards. The symbol, if any, to the right of the
type indicator indicates short shifts of the corresponding
sub-box. 1 indicates short shifts upwards and | indicates
short shifts downwards.

Figure 6 defines the mapping F: ®,—®, , for rule
137 through the 16 box definitions. The derivation of the
box definitions can be done systematically and a catalo-
gue of the box definition of 88 basic cellular automata
rules can be found in [19].

We have now shown how to derive the set of box
definitions characterizing a given cellular-automaton
rule. The set of box definitions constitutes a lattice-size-
independent iteration algorithm, by which it is possible to
construct the global mapping of any size cellular automa-
ton, by incrementing the number of lattice sites the ap-

The arrows, if any, to the
left of the typeindicators
indicate long shifts of the

The arrows, if any, to the
right of the typeindicators
indicate short shifts of the

subboxes. 1t indicates a subboxes. | indicates a
shift upwards, and § indi- shift upwards, and | indi-
cates a shift downwards. cates a shift downwards.
trC D1 |}~ e ver-
tical positions of the non-
etpty subboxes indicate
the position of the corre-
. Lo sponding subboxes inside
These letters indicate the

the box reached after any

types of the subboxes. vertical shifts.

FIG. 5. Definition of a box for a recursive definition of the
global mapping of a cellular automaton. The figure illustrates
the behavior of a type-D box at the addition of a new site to the
cellular automaton. The box is split into two sub-boxes, one of
which is shifted 2" ~! boxes upwards and placed in the bottom
of the box reached after the shift. The type of this sub-box is C.
The other sub-box is shifted one box upwards and placed in the
bottom of the box reached after the shift. This sub-box has the
type D as has the original box.
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FIG. 6. Complete set of box definitions for the cellular au-
tomaton with rule 137. The notation demonstrated in Fig. 5 is
used. Note that some of the box definitions are identical, for in-
stance, B and D.

propriate number of times.

As an illustration of the method the recursive con-
struction of the global mapping for a cellular automaton
under the action of rule 137 follows. One starts with
a lattice of size two. From the rule table it is easily
seen that ®,(00)=11, ®,(01)=00, ®,(10)=00, and
®,(11)=11. To determine the types of the four boxes in
the global map for n =2 the sequences at the ordinate
axis are inspected. For this particular size of the cellular
automaton the two first bits of a sequence are identical to
the two last bits. Therefore, the types of the boxes for the
global mapping are, from left to right, 4, F, K, and P.
This result is true not only for rule 137, but for all ele-
mentary cellular automata, due to the ordering of the
possible states of the automaton. Figure 7(a) shows the
global mapping of the cellular automaton with two sites
and with the box types indicated. Using the complete set
of box definitions from Fig. 6 it is easy to iterate the map-
ping and thereby obtain the global mapping for the cellu-
lar automaton of any lattice size. The mappings for three
and four site cellular automata are shown in Figs. 7(b)
and 7(c).

A P| P B i
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| T b
H 5|
F K ! S s
B|G I . FHT TR
(a) (b) (©)

FIG. 7. The global map of the cellular automaton with rule
137 on (a) two lattice sites, (b) three lattice sites, and (c) four lat-
tice sites. The types of the boxes in the mapping are indicated
within each box. Note that all 16 box types can at earliest be
found in the automaton with four lattice sites.

B. Computational aspects of the recursive mapping definition

It should be noted that the computational resources in-
volved in the updating of a cellular automaton on a lat-
tice of size n using this recursive construction scheme is
of the same order of magnitude as the work required to
propagate the local rule on the lattice of size n in the con-
ventional way.

By the conventional method, n cells need to be updat-
ed, which requires O (n) operations, i.e., the work grows
linearly with n.

To update the state a =a,a,. . .a, for a cellular au-
tomaton into the corresponding state b =®,(a) using the
recursive definition of &, one starts out with
b;b,=®,(a,a,), which hardly represents any computa-
tional obstacle. From that point on a stepwise adding of
the remaining bits to a is done, using the box definitions
to keep track of the bits, i.e., the vertical position, of b.
This also requires of the order of O (n) operations.

The main advantage of the recursive definition of glo-
bal cellular-automata mappings, however, does not lie in
its updating scheme but in the information it offers about
the global state space structure. In Secs. IIC, III A, VA,
and V B we shall take advantage of this.

C. Self-similarity of the mappings

The apparent self-similarity of Figs. 1 and 2 can be ex-
plained from the recursive definition of the global map-
ping. We have already shown that a given global map-
ping can be constructed from no more than 16 different
types of boxes. The graphical representation of the map-
ping can be divided into four equally large areas or
columns, in the following referred to as the four main
columns. Due to the chosen ordering of states, the se-
quences in the intervals of the abscissa axis correspond-
ing to the four main columns starts with
00...,01...,10..., and 11..., respectively. Consid-
ering a given main column, the number of different types
of boxes that can appear inside the column is four, since
the first two bits in all sequences inside a main column
are fixed. For instance, the box types that can occur in
the first main column are A4, B, C, and D. Furthermore,
a given box in a main column will have any of the four
box types appearing in the main column as a sub-box
after two additions of new sites. This is due to the fact
that by the addition of new sites, i.e., new bits in the se-
quences representing the states of a cellular automaton,
all combinations of the two last bits in the sequences
representing subboxes of a box will appear. For instance,
according to the definition in Fig. 6, a type-4 box will
turn into a type- 4 box and a type-B box, once it is iterat-
ed. In the next iteration of the type-B box, this box will
turn into a type-C box and a type-D box.

An arbitrary box in one of the main columns of a glo-
bal mapping of a cellular automaton with r sites will gen-
erate a certain structure of the global mapping as n is re-
peatedly incremented. Since a box will have any of the
box types appearing in the main column, including itself,
as a sub-box after one or two additions of new sites, the
structure generated by the box will be generated repeat-
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edly in smaller and smaller versions. This demonstrates
that a structural self-similarity is present in the iterative
process involving the different types of boxes correspond-
ing to a particular cellular-automata rule. However, the
structural self-similarity doés not necessarily imply
geometric self-similarity of the global mappings, as indi-
cated by the figures. With the introduction of local box
definitions in Sec. III, it will become clear that the self-
similarity extends to the geometric representation of the
global mappings.

II1I. SIMPLIFIED RECURSIVE DEFINITION
OF THE MAPPINGS

The recursive box definitions presented in Sec. II have
the property that boxes are allowed to place sub-boxes
outside themselves. This is needed for the boxes to gen-
erate an exact representation of the global mapping of
any cellular automaton with any number of sites. How-
ever, the possibility of these shifts of sub-boxes makes the
box definitions rather complicated as compared to the
new type of box definitions, which will be introduced in
the following. These new types of box definitions are re-
ferred to as local box definitions, since no long or short
shifts will be allowed.

The local box definitions have the advantage that they
can be generated by hand, simply by inspecting a global
mapping represented graphically with a reasonably good
resolution. This graphical method, which will be demon-
strated in Sec. IV, shows how accurately the local box
definitions reflect the structure of the global mappings of
cellular automata. However, the local box definitions can
also be derived systematically from the nonlocal box
definitions. It is also possible to generate an exact global
mapping from the local box definitions by using certain
complementary selection rules to be presented in Sec.
IV A. However, the approximations of the global map-
pings that can be generated from the local box definitions
have certain properties in common with the real global
mappings. Therefore we can take advantage of the sim-
plicity of the local box definitions to extract information
about cellular automata that would be hard to obtain us-
ing other techniques.

Let us start by establishing a formal basis for the local
box definitions. Recall that ®, treated as a set consists of
2" boxes placed in a 2"X2" matrix and that ®, can be
generated using the non-local box definitions (Sec. II).
Now define another set of boxes ¥, in the 2" X 2" matrix.
We require from ¥, that (i) it can be constructed from a
set of local box definitions, (ii) it contains ®, as a subset
for all n, and (iii) it is a minimal construction in the sense
that it does not contain any boxes not needed in order to
comply with (i) and (ii).

Consider a column in the 2"X2" matrix of ®,. Such a
column contains exactly one box, thus the same column
in ¥, must contain a box at the same position. Suppose
that the box in ®, makes a shift, long or short, of one of
its sub-boxes. In that case, ®,  will have a sub-box out-
side the original box, hence ¥, must also have a sub-
box outside the original box. Since ¥, ,, is to be generat-
ed from ¥, by the use of local box definitions, ¥, also
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FIG. 8. ¥, (thick lines) and | ;%;®; (thin lines) for rule 137.
Note that the boxes of ¥; with the side length % exactly covers

U 1@, i.e., there is no box from ¥, that does not contain a
box from | ;Z;®; and all parts of |J [Z;®; are covered by V.

has to include a box containing the sub-box outside the
original box of ®,. It readily follows that ¥, has to con-
tain all sub-boxes that ever appear as ®, is iterated re-
peatedly by F: ®,—®, ;.

This leads to the following definition of ¥,,.

Definition. ¥, is the set of boxes with side length 27"
arranged inside a 2"X2" matrix that exactly covers
U ~,®;; exactly covers meaning that there is no box
from ¥, that does not contain one or more boxes from
U:2,®; and that all boxes from |J;Z,®; are covered
byV¥,.

In Fig. 8, |J;%3;®; (thin lines) is shown together with
W, (thick lines) in order to illustrate the definition of ¥,
for rule 137.

A. Lattice size invariance of the mappings

Consider a column c¢—not necessarily a main
column—of width 27" in ¥, and ®,. ®, has exactly
one box inside c¢. If the box is ever to place sub-boxes
outside itself in short shifts, this has to take place in the
first addition of a new site to the cellular automaton,
since this is the only time the neighborhood leading to b,
is changed. Short shifts may occur at subsequent site ad-
ditions, but by then the increased resolution of the map-
ping will prevent the sub-boxes from getting outside the
box they landed in by the first site addition.

If there are any long shifts in any of the box types of
the main column in which c is placed (or is identical to), a
long shift will take place already at the first addition of a
new site, and thus at all subsequent additions. This is due
to the fact that both of the possible neighborhoods lead-
ing to b,, i.e., (0a,a,) and (1la,a,), occur as the first new
site is added. If long shifts are present either
b9=¢(0a,a,) or b!=¢(1a,a,) has to differ from the
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original most significant bit b, =d¢(a,a,a,). It follows
readily that at least one sub-box of any box does not make
a long shift. A similar result applies to short shifts.

The possible scenarios by which a column of ¥, can be
populated with boxes in order to exactly cover | %, ®,
can now be outlined.

(i) In the case that there are no long shifts and no
short shifts take place in the first addition of a new site,
there will never appear sub-boxes outside the original
box. Thus ¥, contains one box in ¢ at the same position
as the box in ®,,.

(ii) In the case that there are no long shifts and a short
shift takes place in the first addition of a new site, this
will leave one sub-box inside the original box and one
sub-box in the box right below or right above the original
box. In all subsequent site additions, the sub-boxes will
remain inside these two boxes of ®,. Thus ¥, contains
two boxes in ¢ positioned atop of each other with one of
them at the same position as the box in ®,,.

(iii) In the case that there are long shifts in the main
column and no short shift takes place in the first site ad-
dition, a result corresponding to the short shift case (ii)
applies, except that the two boxes in ¥, are placed 2" !
boxes from each other corresponding to half the length of
the ordinate axis.

(iv) In the case that a column has long shifts as well as
a short shift in the first site addition, two different
scenarios are possible. Either one sub-box makes a short
shift while the other makes a long shift, or one sub-box
makes both a long and a short shift (in which case the
two shifts are superimposed) while the other sub-box
remains inside the original box in the first site addition.
In any case the long shifts resulting from the subsequent
addition of a new site implies that the ¢ has to contain
four boxes in ¥,. An interesting implication of cases (iii)
and (iv) is that if a main column has long shifts, the part
of ¥, that is inside the main column will consist of two
identical images shifted 2" 1 boxes vertically, corre-
sponding to half the length of the ordinate axis. In other
words, the upper and the lower half of ¥, will be identi-
cal inside the main column; see, for instance, Fig. 1.

All four scenarios are sketched in Fig. 9. The above
discussion of scenarios (i)—(iv) reveals that the maximum
number of boxes in any column of V¥, is four, indepen-
dent of n and the cellular-automaton rule number. In
other words, the number of boxes in ¥, is less than or
equal to four times the number of boxes in ®,. Obvious-
ly W, contains at least as many boxes as ®,. Thus the
fractal dimension d, (i.e., the capacity dimension [20]) of
V., as n tends to infinity, equals that of ®,, namely 1.

The discussion also reveals that in a column where
scenarios (i)-(iii) take place, ®, ,; will have boxes inside
all boxes of ¥,. In a column where scenario (iv) takes
place @, . ; will not have boxes inside all boxes of ¥, , but
@, ,, will. It is easily seen that if &, ,;, where i = 1, has
boxes inside all boxes of ¥,, all @, ;, where jE[i; x|
will have boxes inside ¥,. In other words, for all n =2,
all of ®, ., P, 3, ...,P, has boxes inside all boxes of
v,

This accounts for the apparent lattice size invariance
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observed in Fig. 1. Since any graphical representation of
a global mapping has a finite resolution (not to mention
the resolution of the human eye) corresponding to a box
with side length 27" any graphical representation of
@, , where n > res+2 is identical to ¥ ... In the following
section we will take advantage of this fact in the con-
struction of local box definitions directly from graphical
representations of global cellular-automata mappings.

IV. DERIVATION OF LOCAL BOX DEFINITIONS
FROM GRAPHICAL REPRESENTATIONS
OF THE MAPPINGS

The simplified recursive definition of the global map-
ping that we have just described formally in Sec. III can
be derived in at least two ways. First, it can be derived
from the nonlocal box definitions [19]; the algorithm for
the derivation can be found in the Appendix. Second, it
can be derived in a more direct and quite elegant way
from graphical representations of global mappings. This
will be demonstrated in the following.

Contemplate one of the graphical representations of
global mappings shown in Fig. 2. The formation of a set

n n+1 n+2 n+l n+2

ah:R:

Scenario (ii)

Short shifts and no long shifts in
the first site addition.

Scenario (i)

Neither long nor short shifts in the

first lattice site addition.
‘ _5‘
|
I

H H | |
‘ : ! l1/2 : - — :1,;2

| L !

| H o 1l

Scenario (iv)
Both long and short shifts in the first site
addition.

n+1 n n+1 n+2

|
| i

Scenario (iii)

Long shifts and no short shifts in
the first site addition.

FIG. 9. Different scenarios for the distribution of sub-boxes
in a column of @, and the effect of this on ¥,. In each scenario
the black squares represents ®,, ®, ., and ®,,. The frames
indicates the positions of the boxes of ¥,. These boxes are sup-
posed to cover the boxes of | ;Z,®; and they are added in each
scenario when they are needed in order to cover boxes of ®; not
already covered. In scenario (i) a single box of ¥, is able to cov-
er both ®,, ®,,,, and ®, ;,; due to the rules governing the
nonlocal box definitions it therefore also covers | /~,®P;. In
scenarios (ii) and (iii) an additional box of ¥, is necessary in or-
der to cover ®,, P, ., P, ,, and thus Y 2,P;. In scenario
(iv) the first site addition results in two sub-boxes located
2" "'+ 1 boxes from each other (i.e., a long and a short shift su-
perimposed), which can be covered by two boxes of ¥,. Due to
long shifts in the subsequent site addition yet another two boxes
of W, are necessary to cover &,,®,,,, and ®,,,. The
scenarios in the figure corresponds to the box types G, F, C, and
A, respectively, from Fig. 6.
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of local box definitions capable of generating an image
identical to the graphical representation is now present-
ed. The first box to be defined is the box corresponding
to the entire image. The box, which is given the name A,
is divided into four sub-boxes, as shown in Fig. 10(a).
There are four nonempty sub-boxes inside A. This is in
contrast to nonlocal box definitions in which only two
sub-boxes are defined in each box, one in each side of the
box. Since the picture now being generated will contain
up to four boxes per column, there is nothing “illegal”
about two sub-boxes on top of each other, and hence four
sub-boxes inside one box. The sub-boxes of A are named
B through E in a clockwise manner, so that B is in the
upper left corner of A, as shown in Fig. 10(a). Since no
shifts are allowed in the definition of a local sub-box, only
the new box type has to be specified.

To define B the upper left sub-box of A is enlarged and
divided into sub-boxes as shown in Fig. 10(b). In this
case the two sub-boxes on the right-hand side are both
empty. By comparing the upper left sub-box of B with
the upper left sub-box of A in Fig. 10(a), it is noted that
these two sub-boxes are identical. The same goes for the
lower left sub-box of B and the upper right sub-box of A.
Since the two sub-boxes in A are already defined as B
and C, respectively, the same names for the sub-boxes of
B are used. Hence the definition of B is that the upper

B|C
A= < | =
'w" E|D
(b)
B _|B
C
(c)
C
C: 2 =
D
’ ]
D: =
E
(e)
B|C
E: =
C|D

FIG. 10. Derivation of local box definitions of a rule-137 cel-
lular automaton. To derive a set of local box definitions of a
global cellular-automaton mapping, the entire image of the
mapping is considered to be a local box definition. That is, a
name is assigned to it and it is divided into four sub-boxes, each
of which is given a name as well. If the image of a sub-box is
recognized as an already defined box or sub-box, the name of
that box is given to it, otherwise a new name is assigned to the
subbox. This procedure continues with each of the sub-boxes,
until all boxes, sub-boxes, and sub-sub-boxes are defined. This
will happen within a limited number of steps due to the self-
similarity of the global mapping.

left sub-box is a type-B box and the lower left subbox is a
type-C box, while the other two sub-boxes are empty.

In the enlargement of C shown in Fig. 10(c) it is easily
seen that C contains two empty sub-boxes on the left-
hand side. The sub-boxes in the right-hand side are
recognized as C and D by inspecting Fig. 10(a). The
definitions of D and E are found in a similar manner, and
they are shown in Figs. 10(d) and 10(e).

In general, the derivation of local box definitions from
a graphical representation of the global mapping is car-
ried out by repeatedly dividing the undefined sub-boxes
into new sub-boxes until all boxes are recognized as pre-
viously defined boxes. By systematic use of the algorithm
in the appendix, one can show that this always takes
place within a limited number of box definitions, no more
than seven.

Note that none of the definitions of sub-boxes of A re-
quired definitions of new box types. This need not always
to be the case. However, for all elementary cellular-
automata rules, all box types needed to define ¥, will be
encountered within the first three levels of boxes, corre-
sponding to n <3.

Note also that the main box A does not reappear as a
sub-box as new sites are added to the cellular automaton.
It is a transient box type. In some cases (for instance,
rules 72, 104, and 132) also the immediate sub-boxes of
the main box are transient box types that only appear
once as the number of sites is repeatedly increased. This
apparent disagreement with the nonlocal box definitions,
in which all box types reappear infinitely many times as
new sites are added, is explained by the fact that the main
box and its immediate sub-boxes correspond to 2° and 2!
possible states of the cellular automata, whereas the non-
local box definitions are only valid for 22 and more possi-
ble states.

One may ask if it is always straightforward to decide if
two sub-boxes are identical or not. For instance, would it
be possible for a difference between two sub-box images
to be of a magnitude hardly visible? This would not be
possible, since differences between images are the result
of differences between sets of nonlocal box definitions.
Thus any difference has to be of a magnitude correspond-
ing to 273 of the side length of an image, i.c., hardly pos-
sible to overlook. This is due to the fact that all nonlocal
box types appearing in a main column appear after at
most two site additions, and thus are evaluated in the
third site addition.

The entire set of local box definitions of rule 137 con-
sists of five boxes. This number may vary from rule to
rule. For instance, rules O and 204 (the zero-fixed-point
rule and the identity rule, respectively) has only one box
in their definitions, while rules such as 22 and 90 has
seven different boxes.

In a sense the number of local box definitions needed to
construct ¥, of a cellular automaton reflects the com-
plexity of ¥, and thus the global mapping [21,22]. How-
ever, a classification of cellular-automata rules according
to the number of local box definitions needed to produce
¥, does not resemble Li and Packard’s classification
[19,18]. This indicates that the number of local boxes
needed to construct the global mapping only poorly
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reflects the typical steady-state dynamics, which is the
basis of Li and Packard’s classification and vice versa.

Once given the local box definitions corresponding to a
rule, the construction of ¥, is straightforward. Start out
with the main box A, which corresponds to ¥, and
evaluate it according to its definition by substituting it
with its four sub-boxes. This process is referred to as an
iteration of A. This should not be confused with an
iteration of a cellular automaton. An iteration of a local
box definition corresponds to the addition of a site to a
cellular automaton. The first iteration of A resultsin ¥,
and by repeated iteration of the sub-boxes herein one ob-
tains ¥, and so on. The process is shown in Fig. 11 for
V¥, through ¥, for rule 137.

A. Derivation of the mapping from the approximation

Having derived the local box definitions directly from
the graphical representation of the global mappings as
described above, the approximate global mapping ¥, can
be constructed using the local box definitions. It is possi-
ble to extract the exact global mapping P, of a cellular
automaton from ¥, using some rules describing how to
select the box representing ®, in a given column of ¥,,.
To do this one has to consult the nonlocal box definitions,
and thus some of the captivating simplicity of the local
box definitions is lost. It should therefore be emphasized
that the potential of local box definitions lies mainly in
utilizing their simplicity to calculate properties of ¥,
that are shared with @, (Sec. V A) and not in using them
to generate the exact global mapping. However, the
selection rules can be useful when calculating properties
of ®, by adjusting results obtained for ¥, (Sec. V B).

Consider a column c in ¥,,. In case of only one box in
¢, this box is naturally identical to the box in ®,. In the
case that ¢ contains two or four boxes, the two first and
the two last bits of the sequence a, representing ¢ on the

T
‘ B o]
B C
A : -
E D
|
B | C SRR 5
cl . |D} 5 T
( | -
D it L_F "iﬂi comm
B¢ | B
ot T PR
el sl | Hee R
C[p] ﬁl Hma.

FIG. 11. The first iterations of the set of local box definitions
of a rule-137 cellular automaton. Top row: ¥, through ¥, (left
to right). Bottom row: ¥; and ¥,. The positions of the boxes
of ®,, ®;, and ¥, are indicated in V¥,, ¥;, and V,, respectively,
with bold frames. Note that the number of boxes in each
columnof ¥,,n€{0,...,4}is 1,2,0r 4.

abscissa axis, have to be inspected. Remember, that only
16 different combinations of these bits characterizing ¢
exist, and thus at most 16 different selection rules is need-
ed to choose the correct boxes in all of ¥,. By investigat-
ing how the box in @, distributes sub-boxes into c, it is
possible to decide the position of the box to select among
the boxes of ¥,. As an example consider a type- 4 box of
the rule-137 cellular automaton (see Fig. 6). This box
shifts its right sub-box downwards on both a long and a
short shift in the first site addition. Due to the long shifts
taking place at the subsequent site additions it is easily
seen that the original type- 4 box ends up as the top box
of the four nonempty boxes in W,. Thus the selection
rule of any column, which has the characteristic bits cor-

TABLE II. Selection rules for a rule-137 cellular automaton. In the case of rule 137 it is always the
top or bottom box of W, that represents ®, when there are four boxes in a column of ¥,. This is not

the case for all rules.

Characteristic Corresponding Selection Boxes in column
bits type of box rule of ¥,
0000 A Top box 4
0001 B bottom box 4
0010 C top box 2
0011 D bottom box 4
0100 E top box 2
0101 F bottom box 2
0110 G 1
0111 H bottom box 2
1000 I bottom box 2
1001 J top box 2
1010 K 1
1011 L top box 2
1100 M bottom box 2
1101 N top box 2
1110 o 1
1111 P top box 2
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responding to a type- 4 box in a rule-137 cellular automa-
ton, is that the top box in a column of ¥, represents the
boxin ®,.

The entire set of selection rules of a rule-137 cellular
automaton is shown in Table II together with the number
of boxes in the columns of ¥,. In the case of rule 137 it
is always the top or the bottom box that represents @,
when four boxes are present in a column of ¥,. Howev-
er, this need not always be the case.

V. PROPERTIES OF THE MAPPINGS
IN THE CONTINUUM LIMIT

A. Dimension of the set of reachable states

In Secs. II-IV it was demonstrated how to derive re-
cursive box definitions for a given cellular automaton and
it was shown how to calculate the global mapping and
approximations of the global mapping of a cellular au-
tomaton from these box definitions. In Secs. VA and VB
this way of defining global mappings and their approxi-
mations is used to extract information about the global
state space structure of cellular automata.

A characteristic quantity of cellular automata is the
number of reachable states in comparison to the total
number of states. The set of reachable states can in a
graphical representation of a global mapping be identified
as the projection of ®,, P(®,), onto the ordinate axis.
The dimension d, of this projection can be calculated us-
ing the expression d.=lim, _, ,log[N(n)]/log[1/e(n)],
where N (n) is the number of boxes of size €(n) needed to
cover P(®,). Let N(n) be the number of nonempty rows
in ®, and let e(n)=2"". Due the nonlocality of the box
definitions of @, it is rather cumbersome to find an ex-
pression for N(n). Since it is shown (Sec. III A) that
¥, _,D®, and that ¥, _, does not contain any boxes not
covering one or more boxes of ®,,, it readily follows that
P(®,) can be covered by M(n —2) boxes of the size
2"72, where M (n —2) is the number of nonempty rows
of ¥, _,. Thusd.(P(¥,))equalsd (P(D)).

Now consider the nonlinear rule 129, which produces
chaotic dynamics [18]. The local box definitions of rule
129 are shown in Fig. 12, and the global mapping can be
seen in Fig. 1. Obviously ¥, has only one nonempty row
(and column) containing the initial A box. As A is
iterated it generates two rows containing BC and ED, re-
J

log[ [£+‘/T_3 ]1/3+ [g_‘/_Ts_ 173
54 108 54 108

+§]

1707
B B
A= C= E= G=
E | D G F | D E
B
E D

FIG. 12. Complete set of local box definitions for the rule-
129 cellular automaton.

spectively, in the projection. One more iteration yields
the rows BC, FG, BC, and FDEG in ¥,. Yet another
iteration results in the rows BC, FG, ED, BC, FG, CB,
and DEGFDE in ¥;. To obtain the projection of ¥, on
the ordinate axis, the order and the number of the boxes
in a row does not matter. The rows of ¥; can therefore
be rewritten into 3 X BC, 2 XFG, DE, and DEFG, where
the multiplication sign is used to indicate the number of
appearances of a given row. Note that no new types of
rows are introduced as ¥, is iterated, and thus will not
appear in subsequent iterations.

By inspecting the local box definitions in Fig. 12, the
following rules can now be established for what rows a
given row leads to as it is iterated: BC—BC,FG;
DE—BC,DEFG; FG—DE; and DEFG— BC,DEFG.
The number of rows as V¥, is iterated can now be ex-
pressed in matrix form as

BC, ., 110 1][ BCa
DE, 1, 0010 DE,
FG, ., 1000|| FG, |’ )
DEFG, ., 010 1||DEFG,

where BC,, is the number of rows containing BC in ¥,
etc.

The total number of nonempty rows in ¥, tends to kA"
as n tends to infinity, where k is a positive constant and A
is the largest eigenvalue of the matrix in (2). Since the
characteristic polynomial of the matrix has a zero eigen-
value it reduces to a third-order polynomial and an
analytical expression for the largest eigenvalue is thus
easily found [23]. The dimension of the set of reachable
states is therefore

d(P(®,))= Tog(2)

A consequence of this result is that the ratio of reachable
states tends to zero as the lattice size of a cellular au-
tomaton under the action of rule 129 tends to infinity.
This method, of course, applies to all elementary
cellular-automata rules and is straightforward once the
local box definitions are given. The algorithm is as fol-
lows. Generate the system of linear difference equations

~0.81137 . (3)

|
governing the contents of the rows of ¥,,. Compute the
largest eigenvalue of the linear equation system and use
this value to compute the capacity dimension. A com-
plete table of the capacity dimension for 88 basic cellular
automata rules is given in Table III.

The above method is equivalent to the method given by
Wolfram [24]. In [24] the appropriate characteristic po-



1708 FELDBERG, KNUDSEN, AND RASMUSSEN 49

TABLE III. Fractal dimensions of the set of reachable states of a basic set of cellular automata.

Rule d. Rule d, Rule d, Rule d,
0 0 26 091573 56 0.879 14 136 0.81137
1 0.694 24 27 0.879 14 57 0.918 68 137 0.92385
2 0.55146 28 0.879 14 58 0.900 53 138 0.81137
3 0.81137 29 0.879 14 60 1 140 0.90053
4 0.694 24 30 1 72 0.81137 142 0.879 14
5 0.81137 32 0.694 24 73 0.91571 146 0.91571
6 0.825 64 33 0.8356 74 091571 150 1
7 0.900 53 34 0.694 24 76 0.879 14 152 0.9196
8 0.55146 35 0.90053 77 0.8356 154 1
9 0.81895 36 0.81137 78 0.90053 156 0.918 68
10 0.694 24 37 0.937 54 90 1 160 0.81137
11 0.81137 38 0.879 14 104 0.93897 161 0.91274
12 0.694 24 40 0.825 64 105 1 162 0.8356
13 0.8356 41 091815 106 1 164 0.937 54
14 0.879 14 42 0.879 14 108 0.90053 168 0.90053
15 1 43 0.879 14 128 0.694 24 170 1
18 0.81137 44 0.879 14 129 0.81137 172 0.879 14
19 0.81137 45 1 130 0.81895 178 0.8356
22 0.93897 46 0.694 24 131 0.923 85 184 0.879 14
23 0.8356 50 0.879 14 132 0.8356 200 0.81137
24 0.694 24 51 1 133 091274 204 1
25 0.9196 54 0.900 53 134 091815 232 0.8356

lynomials are derived from adjacency matrices of state
transition graphs for minimal deterministic finite automa-
ta representing regular languages generated after one
time step in the evolution of the cellular automata.

B. Dimension of the set of fixed points

A quantity influencing the dynamics of a cellular au-
tomaton is the number of fixed points. Since this number
may vary with the size of the cellular automaton, an ex-
pression for the number of fixed points as a function of
the lattice size is of interest. This subject has been
thoroughly investigated by Jen [13], and it turns out that
the number of fixed points F, of a size n elementary cellu-
lar automaton can be expressed by a generalized Fibonac-
ci recurrence relation F, . ,=a,F,+a,F,_,, where a,
and a, are non-negative integers. We shall here present
an alternative method based on the recursive box
definitions where the same relations can be derived as a
by-product of calculating the dimension of the set of fixed
points.

The fixed points of any cellular automaton are
represented by the boxes in @, placed on the diagonal
that goes through the origin of the global mapping. It is
possible to calculate the fractal dimension of the fixed
points using a technique similar to that applied in calcu-
lating the fractal dimension of reachable states in Sec.
V A, since the fractal dimension of the diagonal of ¥”" is
identical to that of the diagonal of ®”, as n tends to
infinity, provided that the selection rules do not cancel all
the boxes of ¥, on the diagonal.

Using a rule-12 cellular automaton as an example, this
is now demonstrated. The local box definitions of this
rule is seen in Fig. 13. Since B and C are the only box
types that appear after ¥,, we can describe the dynamics

of the box types on the diagonal of ¥, in the matrix
equation (4), which is readily derived from the box
definitions in Fig. 13,

Bn+l
Cn+1

B,
C,

01
11

4)

Here B, and C, are the number of B and C boxes, re-
spectively, on the diagonal of ¥,,. Since the largest eigen-
value of the matrix in (4) is A=(1+V'5) /2, the dimension
of the set of fixed points of W, s
d,=log(1+V'5)/log(2)—1~=0.694 24.

It follows readily from (4) that the relationship

F,.,=F,+F,_, (5)

governs the number of fixed points of ¥,. To obtain a
similar expression for the fixed points of the exact map-
ping ®,, one has to consult the selection rules mentioned
in Sec. IVA. The selection rules of a given column de-
pends only on the first two and the last two bits of the
corresponding bit sequence. Thus, for n =4 the selection
rules cancel a certain constant ratio of the boxes on the
diagonal of W,. Unless the selection rules disqualifies all
boxes on the diagonal of ¥, they will therefore have no
effect on the relationship (5).

In the case of rule 12, it is easily seen that the selection
rules will not rule out all the boxes on the diagonal of ¥,

cJ
c

C|B C|B

FIG. 13. Complete set of local box definitions for the rule-12
cellular automaton.
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since all the columns in the first and the second main
column of ¥, only contains one box and the majority of
the boxes on the diagonal of ¥, are placed in this part of
¥, . This implies that equation (5) is valid for the number
of fixed points of a rule-12 cellular automaton, as noted
by Jen [13].

C. State orderings and properties of the mappings
in the continuum limit

The basic method proposed in this paper is based on a
graphical representation of the global mapping, in which
the possible states of the cellular automaton are ordered
according to the decimal equivalents of the binary se-
quences representing the lattice configuration. This or-
dering has been chosen due to its straightforwardness.
Naturally, other orderings than the chosen one can be
used, leading to different graphical representations of the
global mappings, and hence different recursive
definitions. However, the main principles of the method
are not influenced by the ordering of states, as long as the
ordering is based solely on the binary sequences
representing the states of the cellular automaton. One
may consider orderings taking into account the dynamics
of the cellular automatons, and/or the rule table, but
such orderings will be more complicated and will not
necessarily be independent of the lattice size.

Due to periodic boundary conditions a change of the
least significant bit of the state of a cellular automaton a
may result in a change of the most significant bit in
b=®(a). Also the two least significant bits of b may
change. When the most significant bit of b depends on
the least significant bit of a, a characteristic double struc-
ture of & is obtained (see, for instance, Fig. 2). This
double structure can be avoided by using the
updating scheme a/*'=¢(aa}, a!,,) instead of
a}"'=¢(a!_,alal,,). In this way only the three least
significant bits of b=®(a) depends on the least
significant bit of . The metric d (a,b)=3"_,la;—b;|27"
makes all cellular automata defined through the new up-
dating scheme continuous for n — . The two updating
schemes are of course equivalent, since their images can
be transformed into each other via a simple shift of the
periodic lattice. Due to the shifts of sub-boxes and the
ordering of states, the graphical representation of the glo-
bal mapping for n sufficiently large appears to be the pic-
ture of a discontinuous function. This applies to all local
updating scheme. The apparent discontinuities are not
only caused by long shifts. Short shifts and local sub-
boxes has the same effect, even though they do not give
rise to a double structure. In fact there is, in general, no
well-defined limit function for n — «. The discontinui-
ties mentioned above presents the existence of such a
unique limit function for almost all states and for almost
all rules tables. In fact, out of the 256 elementary cellular
automata rules, only rules 0, 51, 204, and 255 yields well-
defined limiting functions. Note that, in principle, the
global mappings for all rules can be transformed into C'
functions of the interval [0;1] by using a recently pro-
posed method by Moore [25].
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V1. DISCUSSION

We have presented a method for recursive definition of
the global mapping ®, for an elementary cellular au-
tomaton with n lattice sites, where 2<n <. In the
present paper we have only treated elementary cellular
automata, but the method applies to any local cellular au-
tomaton.

By the use of nonlocal box definitions, which were in-
troduced in Sec. II, the function F: &, —»®, . can be
defined from the rule table of any cellular automaton.
Once the box definitions together with the global map-
ping of the two lattice site version of the cellular automa-
ton are given, it is possible to update the cellular automa-
ton. The computational resources needed for such an up-
dating are proportional to the number of lattice sites and
are therefore of the same order of magnitude as the com-
putational resources required to update a cellular au-
tomaton in the traditional way, using the rule table.
However, the real force of the recursive definition lies in
the information it offers about the global state space
structure of cellular automata. For instance, the self-
similar state space structure of all cellular automata fol-
lows readily from the recursive definition of the global
mapping.

A useful supplement to the global mapping ®, is the
approximation ¥,, introduced in Sec. III. By use of ¥,
it is possible to account for the apparent lattice size in-
variance of graphical representations of global mappings
of cellular automata. ¥, is defined by the use of local
box definitions, which can be calculated from the nonlo-
cal box definitions defining ®,. The local box definitions
can also be extracted directly from a graphical represen-
tation of the global mapping, by the use of the simple,
geometrical method shown in Sec. IV. Due to the simpli-
city of local box definitions as opposed to nonlocal box
definitions it is possible to calculate properties of ¥,,
which are difficult to find for ®,. This was used to calcu-
late the fractal dimension of the set of reachable states
and the fractal dimension of the set of fixed points in cel-
lular automata in the infinite lattice size limit (Secs. VA
and V B).

Thus we have introduced a method based on recursive
definitions of global mappings for cellular automata and
applied it on a few problems concerning the global state
space structure of cellular automata. The method is
efficient for solving this kind of problems and offers a
complementary geometrical approach to the solution
methods proposed by Wolfram [24] and Jen [11].

There are several directions in which this global
geometric approach can be taken. Most questions about
the relation between the global state space structure and
the dynamics of cellular automata are still open. An ob-
vious next step is therefore to investigate higher order
iterates of @, and ¥,. At this point we have not made
any systematic studies of these higher-order cellular-
automata global mappings, but it is clear that the com-
plexity of the cellular-automata dynamics is reflected by
the higher iterates of ®, and ¥,. Recall that this is not
the case for the first-order iterates.

Investigating higher-order iterates of ¥, and ®, is
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closely related to the investigation of cellular automata
with neighborhood radii larger than one, since a cellular
automaton with neighborhood radius m can simulate m
iterations of an elementary cellular automaton. Even
though cellular automata with neighborhood radii larger
than one complicates the box definitions somewhat, the
method presented also directly applies to these automata.

Another question is whether symbolic dynamics can be
applied successfully to global mappings of cellular auto-
mata. Following itineraries has been quite successful as a
tool in the investigation of one-dimensional mappings
[26]. Symbolic dynamics can for instance be applied to
rule 170 with a fixed left boundary, and it can easily be
shown that the dynamics of this cellular automaton is to-
pologically conjugate to the shift map and is thus chaotic
[27]. This method would facilitate a connection between
the structure of the global mappings and the dynamical
properties of cellular automata.
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APPENDIX:
DERIVATION OF LOCAL BOX DEFINITIONS
FROM NONLOCAL BOX DEFINITIONS

In the following we describe the derivation of local box
definitions from the nonlocal box definitions and the rule
table. Since the nonlocal box definitions are generated
from the rule table, the procedure illustrates how local
box definitions can be derived directly from the rule
table.

Assuming that the nonlocal box definitions are given in
the way shown in Fig. 6, i.e., by the definitions of the
boxes A through P, the local box definitions are derived
in the following way: all examples used in the procedure
correspond to a rule-137 cellular automaton.

For each nonlocal box definition X€{ 4,B, ..., P},
one or two local boxes are defined.

In the case where one of the sub-boxes of X is shifted
locally, two local box definitions X, and X, are made, one
for each sub-box of X. (Note that local box definitions
are written in boldface, while nonlocal definitions are
written in italics.) Each of the boxes X, and X, is to con-
tain one sub-box at the same position as the correspond-
ing sub-box in X. The names of the sub-boxes in X, and
X, should be the same as the names of the corresponding
sub-boxes in X, with an index 1 added. For instance, the
nonlocal box definition

of a rule-137 cellular automaton (see Fig. 6) leads to the
local definitions

J,= f*% and J,= s

In the case that no sub-boxes are locally shifted, only
one local box X, containing the same sub-boxes as X, is
defined. The names of the sub-boxes are to be the same
as the corresponding sub-boxes of X, with index 1 added.
For instance, the nonlocal box definition

¢1 _

leads to the local definition

f

K,= Eﬂ

Now all the local boxes defined so far are modified to
take into account short shifts of sub-boxes. For each
sub-box in the previously defined local boxes a new sub-
box is added in case the nonlocal box definition corre-
sponding to the sub-box contains short shifted sub-boxes.
Each new sub-box gets the index 2 instead of 1 and it is
placed right above or below (whichever is possible) the
“parent” sub-box. As an example consider

Since the nonlocal box definitions of J and I both contain
short shifts, K, is modified to

_ N
Kl_ E;sz'

Next the positions of boxes in ¥, are calculated. Place
the local boxes A, F;, K;, and P, in ¥, at the positions
indicated by ®, (the rule table is used to get this informa-
tion), with A, in the first column and so on. By consult-
ing @, of a rule-137 cellular automaton we get

If the nonlocal box definition corresponding to a local
box in ¥, contains short shifted sub-boxes, a new box is
added in ¥,, with the index 2 instead of 1. The new box
is placed right above or below the original box in the
same part (upper or lower) of ¥,. Since 4, F, and P con-
tain short shifts (see Fig. 6) we get

Aq Py
A2 P2
F3
Fi1 Ky

If the nonlocal box definition corresponding to a local
box in ¥, contains long shifted sub-boxes, the upper or
lower part of the corresponding column in ¥, is copied,
so that the column contains the same structure in the
upper part and in the lower part. Since A4 contains long
shifts (see Fig. 6) we get
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A1 Py
Ao Po
1|F2
2{F1 K1

At this point there are 16 or more local box definitions.
Since several of them are equivalent, the number of local
box definitions is reduced by giving equivalent boxes the
same name. By using the names A,B,C,..., i.e, noin-
dices, a nice and simple notation is obtained. The names
of the local boxes need not necessarily depend on the
names of the corresponding nonlocal box definitions,
since these are not referred to after this point in time. In
case of rule 137, we end up with only four nonequivalent
boxes corresponding the boxes B, C, D, and E in Fig. 10.

In order to obtain the definition of local boxes in ¥,
and ¥, we divide ¥, into four sub-boxes which are com-
pared to the already defined local boxes. In the case that
there are undefined sub-boxes, new local box definitions
are added. The process is repeated for W,. In the case of
a rule-137 automaton we have at this point

QoW
Q

The four sub-boxes of ¥, are

c
> | [p|? |(E

, and

which are easily identified as the previously defined boxes
B, C, D, and E. Finally we see that

B|C
\IIO_ED

does not correspond to a previously defined box. Thus
we assign the new A toit. With

A=BC

E|D

we have a complete set of local box definitions corre-
sponding exactly to Fig. 10.
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